Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Neurobiol ; 58(2): 603-616, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32997292

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease caused by a variety of unclear complex pathogenic factors. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced progressive PD mice is a well-recognized classic model for studying PD, but the molecular toxicology of this model is still unclear. Here, for the first time, we report gradual neurodegenerative processes in MPTP/p-induced progressive PD mice model using RNA-seq. Transcriptional responses are orchestrated to regulate the expression of many genes in substantia nigra, such as Ntf3, Pitx3, Th, and Drd2, leading to the degeneration of dopaminergic neurons at last. We proposed that the established model could be divided into three phases based on their molecular toxicological features: "the stress response phase" which maintained the microenvironment homeostasis, "the pre-neurodegenerative phase" which demonstrated observed MPTP/p cytotoxicity and gradual degeneration of dopaminergic neurons, and "the neurodegenerative phase" which reflected distinct damage and dopaminergic neuron apoptotic process. Glia cells exhibited a certain protective effect on dopaminergic neurons in 3rd and 6th MPTP/p-induced cytotoxicity. But in 10th MPTP/p injection, glia cells play a promoting role in PD and tissue damages caused by oxidative stress. This study also indicated that the substantia nigra of PD mice showed unique patterns of changes at each stage. Moreover, neurotrophic signaling pathway, ECM-receptor interaction, oxidative phosphorylation, apoptosis and necroptosis were enriched at 3rd and 6th MPTP/p injection, which might be associated with the PD progress. This study provided an extensive data set of molecular toxicology for elucidating of PD progression and offered comprehensive theoretical knowledge for the development of new therapy.


Assuntos
Regulação da Expressão Gênica , Intoxicação por MPTP/genética , Degeneração Neural/genética , Doença de Parkinson/genética , Probenecid/toxicidade , Transcriptoma/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Comportamento Animal , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Reprodutibilidade dos Testes , Substância Negra/patologia , Transcriptoma/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Toxicol Appl Pharmacol ; 359: 91-101, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30248416

RESUMO

Aggravating effect of probenecid (a traditional anti-gout agent) on emodin-induced hepatotoxicity was evaluated in this study. 33.3% rats died in combination group, while no death was observed in rats treated with emodin alone or probenecid alone, indicating that emodin-induced (150 mg/kg) hepatotoxicity was exacerbated by probenecid (100 mg/kg). In toxicokinetics-toxicodynamics (TK-TD) study, aspartate aminotransferase (AST) and systemic exposure (area under the serum concentration-time curve, AUC) of emodin and its glucuronide were significantly increased in rats after co-administrated with emodin and probenecid for 28 consecutive days. Results showed that the increased AUC (increased by 85.9%) of emodin was mainly caused by the decreased enzyme activity of UDP-glucuronosyltransferases (UGTs, decreased by 11.8%-58.1%). In addition, AUC of emodin glucuronide was increased 5-fold, which was attributed to the decrease of multidrug-resistant-protein 2 (MRP2) protein levels (decreased by 54.4%). Similarly, in vitro experiments proved that probenecid reduced the cell viability of emodin-treated HepG2 cells through inhibiting UGT1A9, UGT2B7 and MRP2. Our findings demonstrated that emodin-induced hepatoxicity was exacerbated by probenecid through inhibition of UGTs and MRP2 in vivo and in vitro, indicating that gout patients should avoid taking emodin-containing preparations in combination with probenecid for a long time.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Catárticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Emodina/toxicidade , Glucuronosiltransferase/antagonistas & inibidores , Probenecid/toxicidade , Fármacos Renais/toxicidade , Animais , Catárticos/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Sinergismo Farmacológico , Emodina/farmacocinética , Células Hep G2 , Humanos , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Probenecid/farmacocinética , Ratos , Ratos Sprague-Dawley , Fármacos Renais/farmacocinética
3.
J Neurol Sci ; 392: 77-82, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031172

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder accompanied by movement deficits with selective degeneration of dopaminergic neurons in the substantia nigra (SN). Recent studies indicate that early diagnosis of PD has important implications for the disease-modifying strategy for PD showing not only some dopaminergic neuronal damage but also non-motor symptoms, which occur several years before the onset of motor symptoms. However, studies on the relationship between non-motor symptoms and its underlying mechanisms from the early to the late phase of PD are unknown. Here, we aimed to show alterations in the non-motor symptoms of PD, including colonic dysmotility and impaired olfaction, and the related factors by intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) plus probenecid (MPTP/p). A mouse model of the early stage of PD was developed by systemic administration of MPTP (25 mg/kg, i.p.) and probenecid (100 mg/kg, i.p.) at 3.5-day intervals for a total of 10 injections. We performed motor and non-motor behavioral tests after 3 (called asymptomatic) and 10 (called symptomatic) injections of MPTP/p compared with the untreated (called control) group. We found that there were motor disturbances at the symptomatic stage, while impairments in intestinal motility and olfaction were observed from the asymptomatic stage. We also found the reduction of dopaminergic neuronal cell numbers in the SN and striatal dopamine transporter levels starting from the asymptomatic stage. At both asymptomatic and symptomatic stages, we demonstrated alterations in the expression of several proteins that are associated with non-motor deficits in the mouse ileum or olfactory bulb compared with the control group. Our findings in chronic MPTP/p-induced mice suggest their potential use as an animal model for the early stage of PD as well as a significant correlation between changes in relevant factors and symptoms.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Gastroenteropatias/induzido quimicamente , Motilidade Gastrointestinal/efeitos dos fármacos , Neurotoxinas/toxicidade , Transtornos do Olfato/induzido quimicamente , Probenecid/toxicidade , Animais , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Transtornos do Olfato/diagnóstico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/complicações , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Pharmacol Exp Ther ; 363(2): 284-292, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28912345

RESUMO

The novel bibenzyl compound 2-[4-hydroxy-3-(4- hydroxyphenyl) benzyl]-4-(4- hydroxyphenyl) phenol (20C) plays a neuroprotective role in vitro, but its effects in vivo have not yet been elucidated. In this study, we estimated the efficacy of 20C in vivo using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) mouse model from behavior, dopamine, and neuron and then the possible mechanisms for these effects were further investigated. The experimental results showed that 20C improved behavioral deficits, attenuated dopamine depletion, reduced dopaminergic neuron loss, protected the blood-brain barrier (BBB) structure, ameliorated α-synuclein dysfunction, suppressed glial activation, and regulated both nuclear factor-κB (NF-κB) signaling and the NOD-like receptor protein (NLRP) 3 inflammasome pathway. Our results indicated that 20C may prevent neurodegeneration in the MPTP/p mouse model by targeting α-synuclein and regulating α-synuclein-related inflammatory responses, including BBB damage, glial activation, NF-κB signaling, and the NLRP3 inflammasome pathway.


Assuntos
Compostos Benzidrílicos/farmacologia , Bibenzilas/farmacologia , Intoxicação por MPTP/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Probenecid/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dopamina/metabolismo , Inflamação/metabolismo , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Physiol Behav ; 173: 132-143, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185878

RESUMO

Depression is frequently encountered during Parkinson's disease (PD) as a non-motor feature, which has been reported to cause and exaggerate motor deficits and neurodegenerative events in experimental PD models. We studied the effect of chronic mild stress (CMS) (pre, post and pre & post) exposure mediated depression on motor and non-motor symptoms, oxidative stress, inflammation and brain derived neurotrophic factor (BDNF) levels and its related signalling molecules against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced neurotoxicity in mice. CMS and MPTP/p-coexposed C57BL/6 mice exhibited low neuromuscular strength and stride length with enhanced oxidative stress and inflammation as compared to CMS or MPTP/p alone exposed mice. Coexposure diminished the levels of BDNF and expressions of p-TrkB, p-ERK/ERK, p-AKT/AKT and p-CREB in nigrostriatal regions as compared to those of the alone exposure. CMS alone exposed mice showed more anxiety related behaviour with diminished expression of serotonin transporter as compared to MPTP/p alone injected group. Post-stress exposure to MPTP/p mice exhibited lowest motor and reflecting higher anxiety state with greatest enhancement in inflammation and reduction in the protein expression of stress and cell signalling markers as compared to pre and pre & post stress exposed PD mice. However, pre- and pre & post CMS exposed PD animals are more vulnerable to oxidative stress as compared with post-stress experienced MPTP/p mice. CMS mediated depression exacerbates motor/non-motor symptoms in MPTP/p-PD animals by modulating oxidative stress and various signalling molecules. Our results suggested that stress induced NMS can accelerate neurodegenerative processes in the PD in a progressive or expedited manner.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Transtornos Parkinsonianos/fisiopatologia , Estresse Psicológico/fisiopatologia , Adjuvantes Farmacêuticos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Força Muscular/efeitos dos fármacos , Probenecid/toxicidade , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Tiobarbitúricos/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
6.
Neurochem Res ; 42(5): 1354-1365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28181071

RESUMO

Regulation of various signalling (Ras-MAPK, PI3K and AKT) pathways by augmented activity of neurotrophic factors (NTFs) could prevent or halt the progress of dopaminergic loss in Parkinson's disease (PD). Various in vitro and in vivo experimental studies indicated anti-parkinsonic potential of asiatic acid (AA), a pentacyclic triterpene obtained from Centella asiatica. So the present study is designed to determine the neurotrophic effect of AA against 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid (MPTP/p) neurotoxicity in mice model of PD. AA treatment for 5 weeks significantly attenuated MPTP/p induced motor abnormalities, dopamine depletion and diminished expressions NTFs and tyrosine kinase receptors (TrKB). We further, revealed that AA treatment significantly inhibited the MPTP/p-induced phosphorylation of MAPK/P38 related proteins such as JNK and ERK. Moreover, AA treatment increased the phosphorylation of PI3K, Akt, GSK-3ß and mTOR, suggesting that AA activated PI3K/Akt/mTOR signalling pathway, which might be the cause of neuroprotection offered by AA. The present findings provided more elaborate in vivo evidences to support the neuroprotective effect of AA on dopaminergic neurons of chronic Parkinson's disease mouse model and the potential of AA to be developed as a possible new therapeutic target to treat PD.


Assuntos
Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Triterpenos Pentacíclicos/uso terapêutico , Probenecid/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/metabolismo , Triterpenos Pentacíclicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento
7.
Toxicol Lett ; 243: 7-21, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26723869

RESUMO

Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the accumulation of aggregated α-synuclein in specific central nervous system (CNS) regions. Disease development is attributed to α-synuclein abnormalities, particularly aggregation and phosphorylation. The ginsenoside Rg1, an active component of ginseng, possesses neuroprotective and anti-inflammatory effects. The purpose of the present study was to evaluate these activities of Rg1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/probenecid (MPTP/p)-induced PD mouse model for the first time and to elucidate the underlying mechanisms. Oral treatment with Rg1 significantly attenuated the high MPTP-induced mortality, behavior defects, loss of dopamine neurons and abnormal ultrastructure changes in the SNpc. Other assays indicated that the protective effect of Rg1 may be mediated by its anti-neuroinflammatory properties. Rg1 regulated MPTP-induced reactive astrocytes and microglia and decreased the release of cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the SNpc. Rg1 also alleviated the unusual MPTP-induced increase in oligomeric, phosphorylated and disease-related α-synuclein in the SNpc. In conclusion, Rg1 protects dopaminergic neurons, most likely by reducing aberrant α-synuclein-mediated neuroinflammation, and holds promise for PD therapeutics.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Ginsenosídeos/farmacologia , Transtornos Parkinsonianos/patologia , Probenecid/toxicidade , Substância Negra/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
PLoS One ; 11(1): e0146671, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26765842

RESUMO

Parkinson's disease (PD) is regarded as a movement disorder mainly affecting the elderly population and occurs due to progressive loss of dopaminergic (DAergic) neurons in nigrostriatal pathway. Patients suffer from non-motor symptoms (NMS) such as depression, anxiety, fatigue and sleep disorders, which are not well focussed in PD research. Depression in PD is a predominant /complex symptom and its pathology lies exterior to the nigrostriatal system. The main aim of this study is to explore the causative or progressive effect of chronic mild stress (CMS), a paradigm developed as an animal model of depression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg. body wt.) with probenecid (250 mg/kg, s.c.) (MPTP/p) induced mice model of PD. After ten i.p. injections (once in 3.5 days for 5 weeks) of MPTP/p or exposure to CMS for 4 weeks, the behavioural (motor and non-motor) impairments, levels and expressions of dopamine (DA), serotonin (5-HT), DAergic markers such as tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporters-2 (VMAT 2) and α-synuclein in nigrostriatal (striatum (ST) and substantia nigra (SN)) and extra-nigrostriatal (hippocampus, cortex and cerebellum) tissues were analysed. Significantly decreased DA and 5-HT levels, TH, DAT and VMAT 2 expressions and increased motor deficits, anhedonia-like behaviour and α-synuclein expression were found in MPTP/p treated mice. Pre and/or post exposure of CMS to MPTP/p mice further enhanced the MPTP/p induced DA and 5-HT depletion, behaviour abnormalities and protein expressions. Our results could strongly confirm that the exposure of stress after MPTP/p injections worsens the symptoms and neurochemicals status of PD.


Assuntos
Encéfalo/metabolismo , Intoxicação por MPTP/metabolismo , Estresse Psicológico/metabolismo , Animais , Comportamento Animal , Encéfalo/fisiologia , Dopamina/metabolismo , Locomoção , Intoxicação por MPTP/complicações , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Probenecid/toxicidade , Serotonina/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , alfa-Sinucleína/metabolismo
9.
Brain Res ; 1585: 23-36, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24657313

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that results mainly due to the death of dopaminergic neurons in the substantia nigra (SN), and subsequently has an effect on one's motor function and coordination. The current investigation explored the neuroprotective potential of escin, a natural triterpene-saponin on chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced mouse model of PD. Administration of MPTP led to the depleted striatal dopamine content, impaired patterns of behavior, enhanced oxidative stress and diminished expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2). The expressions of interleukin-6 and -10, glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1 (IBA-1), tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) in SN were also enhanced. Oral treatment of escin significantly attenuated MPTP/p induced dopaminergic markers depletion, physiological abnormalities, oxidative stress and inhibit neuroinflammatory cytokine expressions in SN. The result of our study confirmed that escin mediated its protection against experimental PD through its antioxidant and anti-inflammatory properties.


Assuntos
Antiparkinsonianos/farmacologia , Encefalite/prevenção & controle , Escina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Animais , Modelos Animais de Doenças , Dopamina/análise , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Encefalite/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neostriado/química , Transtornos Parkinsonianos/metabolismo , Probenecid/toxicidade , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
10.
J Neurochem ; 127(6): 782-92, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23802648

RESUMO

The uricosuric agent probenecid is co-administered with the dopaminergic neurotoxin MPTP to produce a chronic mouse model of Parkinson's disease. It has been proposed that probenecid serves to elevate concentrations of MPTP in the brain by reducing renal elimination of the toxin. However, this mechanism has never been formally demonstrated to date and is questioned by our previous data showing that intracerebral concentrations of MPP(+), the active metabolite of MPTP, are not modified by co-injection of probenecid. In this study, we investigated the potentiating effects of probenecid in vivo and in vitro arguing against the possibility of altered metabolism or impaired renal elimination of MPTP. We find that probenecid (i) is toxic in itself to several neuronal populations apart from dopaminergic neurons, and (ii) that it also potentiates the effects of other mitochondrial complex I inhibitors such as rotenone. On a mechanistic level, we show that probenecid is able to lower intracellular ATP concentrations and that its toxic action on neuronal cells can be reversed by extracellular ATP. Probenecid can potentiate the effect of mitochondrial toxins due to its impact on ATP metabolism and could therefore be useful to model atypical parkinsonian syndromes.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , 1-Metil-4-fenilpiridínio/metabolismo , Dopaminérgicos/toxicidade , Neurotoxinas/toxicidade , Doença de Parkinson/patologia , Probenecid/toxicidade , Uricosúricos/toxicidade , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Sinergismo Farmacológico , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Rotenona/toxicidade
11.
Neurotox Res ; 23(2): 166-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22669749

RESUMO

Neuroinflammation and apoptosis in the dopaminergic neurons of substantia nigra play an important role in the pathogenesis of experimental and clinical Parkinson's disease (PD). This study focused on the possible anti-inflammatory and anti-apoptotic effects of theaflavin (TF), a black tea polyphenol against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. C57BL/6 male mice were treated with 10 doses of MPTP (25 mg/kg, s.c.) and probenecid (250 mg/kg, i.p.) for 3.5 days interval. TF (10 mg/kg) was administered 1 h prior to the administration of MPTP for 35 days of experimental period. MPTP/p treatment upregulates the release of interleukin-1beta, IL-6, tumor necrosis factor-alpha, IL-10, glial fibrillary acidic protein and Bax, and downregulates anti-apoptotic marker Bcl-2. Oral treatment of black tea polyphenol TF significantly attenuates MPTP-induced neuroinflammation as well as apoptosis. Behavioral studies (catalepsy and akinesia) were carried out to confirm these molecular studies. The results demonstrate that TF mediated its neuroprotection against chronic MPTP-induced toxicity through the involvement of multiple molecular events. It was concluded that TF may provide a precious therapeutic strategy for the treatment of progressive neurodegenerative disease such as PD in future.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Biflavonoides/uso terapêutico , Catequina/uso terapêutico , Encefalite/tratamento farmacológico , Encefalite/etiologia , Intoxicação por MPTP/complicações , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Discinesias/tratamento farmacológico , Discinesias/etiologia , Proteína Glial Fibrilar Ácida/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probenecid/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tempo de Reação/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
12.
Brain Res ; 1433: 104-13, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22138428

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by loss of dopominergic neurons in substantia nigra pars compacta, and can be experimentally induced by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Chronic administration of MPTP/probenecid (MPTP/p) leads to oxidative stress, induction of apoptosis, and loss of dopominergic neurons which results in motor impairments. Epidemiological studies have shown an inverse relationship between tea consumption and susceptibility to PD. Theaflavin is a black tea polyphenol, which possess a wide variety of pharmacological properties including potent anti oxidative, anti apoptotic and anti inflammatory effects. The current study is aimed to assess the effect of theaflavin against MPTP/p induced neurodegenaration in C57BL/6 mice. We found that the theaflavin attenuates MPTP/p induced apoptosis and neurodegeneration as evidenced by increased expression of nigral tyrosine hydroxylase (TH), dopamine transporter (DAT) and reduced apoptotic markers such as caspase-3, 8, 9 accompanied by normalized behavioral characterization. This may be due to anti oxidative and anti apoptotic activity and these data indicate that theaflavin may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative diseases such as PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Biflavonoides/administração & dosagem , Catequina/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Probenecid/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Projetos Piloto , Polifenóis/administração & dosagem , Distribuição Aleatória , Substância Negra/metabolismo , Substância Negra/patologia , Chá/química
13.
Neurosci Lett ; 505(3): 268-72, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22040668

RESUMO

The etiology of neurodegenerative disorders like Parkinson's disease remains unknown, although many genetic and environmental factors are suggested as likely causes. Neuronal oxidative stress and mitochondrial dysfunction have been implicated as possible triggers for the onset and progression of Parkinson's neurodegeneration. We have recently shown that long-term treadmill exercise prevented neurological, mitochondrial and locomotor deficits in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid-induced mouse model of Parkinson's disease that was originally established in our laboratory. In the present study, we further demonstrated that long-term exercise attenuated both cytochrome c release and elevated levels of p53, which are known to be associated with mitochondrial dysfunction in the striatum of this chronic model. On the other hand, the expressions of mitochondrial transcription factor A and peroxisome proliferator-activated receptor gamma coactivator 1α were unexpectedly upregulated in the striatum of this chronic model, but long-term exercise training brought their levels down closer to normal. Our findings suggest that maintaining normal mitochondrial function is essential for preventing the process of Parkinson's disease-like neurodegeneration, whereas stimulating the mitochondrial transcription factors for biogenesis is not obligatory.


Assuntos
Corpo Estriado/metabolismo , Intoxicação por MPTP/patologia , Intoxicação por MPTP/reabilitação , Condicionamento Físico Animal/métodos , Fatores de Transcrição/metabolismo , Adjuvantes Farmacêuticos/toxicidade , Análise de Variância , Animais , Doença Crônica , Corpo Estriado/patologia , Citocromos c/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Teste de Esforço , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Probenecid/toxicidade , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
14.
Ther Umsch ; 68(1): 11-8, 2011 Jan.
Artigo em Alemão | MEDLINE | ID: mdl-21184389

RESUMO

Nephrotoxicity is a common and often clinically relevant adverse drug reaction. Mechanisms include vascular, tubulo-toxic, tubulo-obstructive, and immunological effects. Drug-drug interactions may occur at a pharmacokinetic or pharmacodynamic level. Such interactions can both increase (cisplatin and aminoglycoside) but also protect from nephrotoxicity (cidofovir and probenecid).Important measures for preventing nephrotoxicity are (1) consideration of potential pharmacokinetic and pharmacodynamic interactions when prescribing a drug, (2) prescription of nephrotoxic drugs for the shortest possible period, (3) detection of high-risk patients, and (4) consideration of hydration and prophylactic comedication.


Assuntos
Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Rim/efeitos dos fármacos , Aminoglicosídeos/farmacocinética , Aminoglicosídeos/toxicidade , Analgésicos/farmacocinética , Analgésicos/toxicidade , Antibacterianos/farmacocinética , Antibacterianos/toxicidade , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/toxicidade , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Antirreumáticos/farmacocinética , Antirreumáticos/toxicidade , Cidofovir , Cisplatino/farmacocinética , Cisplatino/toxicidade , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Creatinina/sangue , Citosina/análogos & derivados , Citosina/farmacocinética , Citosina/toxicidade , Humanos , Organofosfonatos/farmacocinética , Organofosfonatos/toxicidade , Probenecid/farmacocinética , Probenecid/toxicidade , Fatores de Risco , Uricosúricos/farmacocinética , Uricosúricos/toxicidade
15.
Exp Neurol ; 219(1): 334-40, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19523952

RESUMO

The pathogenesis of Parkinson's disease is not fully understood, but there is evidence that excitotoxic mechanisms contribute to the pathology. However, data supporting a role for excitotoxicity in the pathophysiology of the disease are controversial and sparse. The goal of this study was to determine whether changes in glutamate signaling and uptake contribute to the demise of dopaminergic neurons in the substantia nigra. Mice were treated chronically with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid or vehicle (probenecid or saline alone). Extracellular levels of glutamate in the substantia nigra were substantially increased, and there was an increase in the affinity, but no change in the velocity, of glutamate transport after MPTP/probenecid treatment compared to vehicle controls. In addition, the substantia nigra showed two types of programmed death, apoptosis (type I) and autophagic (type II) cell death. These data suggest that increased glutamate signaling could be an important mechanism for the death of dopaminergic neurons and trigger the induction of programmed cell death in the chronic MPTP/probenecid model.


Assuntos
Apoptose/fisiologia , Ácido Glutâmico/metabolismo , Homeostase/fisiologia , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Modelos Animais de Doenças , Dopamina/metabolismo , Líquido Extracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/fisiopatologia , Probenecid/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Substância Negra/efeitos dos fármacos , Substância Negra/fisiopatologia , Regulação para Cima/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
16.
Neuroscience ; 149(1): 28-37, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17869432

RESUMO

Physical rehabilitation with endurance exercise for patients with Parkinson's disease has not been well established, although some clinical and laboratory reports suggest that exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. In this study, we used a chronic mouse model of Parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) over 5 weeks. This chronic parkinsonian model displays a severe and persistent loss of nigrostriatal neurons, resulting in robust dopamine depletion and locomotor impairment in mice. Following the induction of Parkinsonism, these mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, 0 degrees of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we examined and compared their cardiorespiratory capacity, behavior, and neurochemical changes with that of the probenecid-treated control and sedentary parkinsonian mice. The resting heart rate after 4 weeks of exercise in the chronic parkinsonian mice was significantly lower than the rate before exercise, whereas the resting heart rate at the beginning and 4 weeks afterward in the control or sedentary parkinsonian mice was unchanged. Exercised parkinsonian mice also recovered from elevated electrocardiogram R-wave amplitude that was detected in the parkinsonian mice without exercise for 4 weeks. The values of oxygen consumption, carbon dioxide production, and body heat generation in the exercised parkinsonian mice before and during the Bruce maximal exercise challenge test were all significantly lower than that of their sedentary counterparts. Furthermore, the exercised parkinsonian mice demonstrated a greater mass in the left ventricle of the heart and an increased level of citrate synthase activity in the skeletal muscles. The amphetamine-induced, dopamine release-dependent locomotor activity was markedly inhibited in the sedentary parkinsonian mice and was also inhibited in the exercised parkinsonian mice. Finally, neuronal recovery from the loss of nigrostriatal tyrosine hydroxylase expression and dopamine levels in the severe parkinsonian mice after exercise was not evident. Taken all together, these data suggest that 4 weeks of treadmill exercise promoted physical endurance, resulting in cardiorespiratory and metabolic adaptations in the chronic parkinsonian mice with severe neurodegeneration without demonstrating a restorative potential for the nigrostriatal dopaminergic function.


Assuntos
Técnicas de Exercício e de Movimento/métodos , Frequência Cardíaca/fisiologia , Degeneração Neural/etiologia , Doença de Parkinson/reabilitação , Resistência Física/fisiologia , Respiração , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Comportamento Animal , Calorimetria Indireta/métodos , Citrato (si)-Sintase/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Eletrocardiografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Neostriado/metabolismo , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Probenecid/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Exp Biol ; 208(Pt 22): 4305-15, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16272253

RESUMO

Birds are uricotelic, and because they excrete urate by renal tubular secretion, they provide a convenient model for examination of this process. Primary monolayer cultures of the isolated renal proximal tubule epithelium from the domestic chicken, Gallus gallus L., were mounted in Ussing chambers where several substrates/inhibitors of renal organic anion transporters were tested for the sidedness and specificity of their effects on transepithelial urate transport. Transepithelial electrical resistance, electrical potential and sodium-dependent glucose current were monitored to detect nonspecific effects. Under control short-circuited conditions the ratio of unidirectional fluxes of [(14)C]urate was found to be 3:1. Active net secretion was specifically inhibited by 1 mmol l(-1) probenecid and 10 mmol l(-1) para-aminohippuric acid (PAH). Bromocresol Green, cimetidine, nocodozole, cytochalasin D and ouabain also inhibited secretion but were toxic. Interstitial-side lithium (5 mmol l(-1)) and glutarate (1 mmol l(-1)) specifically blocked transport, but 10-100 micromol l(-1) glutarate had no effect. Interstitial estrone sulfate (ES) stimulated urate secretion at 10 micromol l(-1) but was inhibitory at 500 micromol l(-1). Active PAH secretion (5:1 flux ratio) was inhibited 34% by 330 micromol l(-1) urate. ES (500 micromol l(-1)) blocked the remainder. From the lumen side, glucose-free, Cl(-)-free and high K(+) (30 mmol l(-1)) solutions, or an alkaline pH of 7.7 had no effect on urate transport and neither did several compounds known to be uricosuric. Lumen-side methotrexate (500 micromol l(-1)) and MK571 (20 micromol l(-1)) strongly inhibited urate secretion. MK571 had no effect from the interstitial side. RT-PCR revealed mRNA for OAT1-, OAT3-, MRP2- and MRP4-like organic anion transporters in chicken proximal epithelium.


Assuntos
Galinhas/metabolismo , Túbulos Renais Proximais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Ácido Úrico/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Verde de Bromocresol/toxicidade , Radioisótopos de Carbono/metabolismo , Cimetidina/toxicidade , Citocalasinas/toxicidade , Primers do DNA , Impedância Elétrica , Epitélio/metabolismo , Estrona/análogos & derivados , Estrona/toxicidade , Glutaratos/toxicidade , Concentração de Íons de Hidrogênio , Lítio/toxicidade , Potenciais da Membrana/efeitos dos fármacos , Nocodazol/toxicidade , Transportadores de Ânions Orgânicos/genética , Ouabaína/toxicidade , Probenecid/toxicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Ácido p-Aminoipúrico/metabolismo , Ácido p-Aminoipúrico/toxicidade
18.
J Exp Biol ; 208(Pt 12): 2227-36, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15939766

RESUMO

We demonstrate the presence of an efficient, multispecific transport system for excretion of organic anions in the Malpighian tubules of the cricket Acheta domesticus using fluorescein (FL) as a model substrate. Malpighian tubules rapidly accumulated FL via a high affinity process (Km = 7.75 micromol l(-1)); uptake was completely eliminated by the prototypical organic anion transport inhibitor probenecid (1 mmol l(-1)), but not by p-aminohippuric acid (3 mmol l(-1)). FL uptake was inhibited by monocarboxylic acids at a high concentration (3 mmol l(-1)), and inhibition was more effective with an increase in the carbon chain of the monocarboxylic acid (37% inhibition by 5-carbon valeric acid, and 89% inhibition by 7-carbon caprylic acid). Likewise, tests using a series of aliphatic glutathione conjugates indicated that only the compound with the longest side-chain (decyl-glutathione) significantly inhibited FL uptake (81% inhibition). FL uptake was inhibited by a number of xenobiotics, including a plant alkaloid (quinine), herbicides (2,4-dichlorophenoxyacetic acid and 4-(2,4-dichlorophenoxy)-butyric acid), and the insecticide metabolites malathion monocarboxylic acid (MMA) and 3-phenoxybenzoic acid (PBA), suggesting that this transport system plays an active role in excretion of xenobiotics from Acheta by Malpighian tubules. HPLC quantification of MMA and PBA accumulation into Malpighian tubules verified that MMA accumulation was via a mediated transport process, but suggested that PBA accumulation was by nonspecific binding. The presence of a transport system in Malpighian tubules that handles at least one pesticide metabolite (MMA) suggests that transport processes could be a mechanism conferring resistance to xenobiotic exposure in insects.


Assuntos
Fluoresceína/metabolismo , Gryllidae/fisiologia , Túbulos de Malpighi/metabolismo , Xenobióticos/toxicidade , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Ácidos Carboxílicos/toxicidade , Cromatografia Líquida de Alta Pressão , Gryllidae/metabolismo , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Microscopia de Fluorescência , Praguicidas/toxicidade , Probenecid/toxicidade
19.
J Vet Pharmacol Ther ; 23(6): 365-72, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11168914

RESUMO

Pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were investigated in normal, febrile and probenecid-treated adult goats after single intravenous (i.v.) administration of enrofloxacin (5 mg/kg). Pharmacokinetic evaluation of the plasma concentration-time data of enrofloxacin and ciprofloxacin was performed using two- and one-compartment open models, respectively. Plasma enrofloxacin concentrations were significantly higher in febrile (0.75-7 h) and probenecid-treated (5-7 h) goats than in normal goats. The sum of enrofloxacin and ciprofloxacin concentrations in plasma > or =0.1 microg /mL was maintained up to 7 and 8 h in normal and febrile or probenecid-treated goats, respectively. The t1/2beta, AUC, MRT and ClB of enrofloxacin in normal animals were determined to be 1.14 h, 6.71 microg .h/mL, 1.5 h and 807 mL/h/kg, respectively. The fraction of enrofloxacin metabolized to ciprofloxacin was 28.8%. The Cmax., t1/2beta, AUC and MRT of ciprofloxacin in normal goats were 0.45 microg /mL, 1.79 h, 1.84 microg .h/mL and 3.34 h, respectively. As compared with normal goats, the values of t1/2beta (1.83 h), AUC (11.68 microg ? h/mL) and MRT (2.13 h) of enrofloxacin were significantly higher, whereas its ClB (430 mL/h/kg) and metabolite conversion to ciprofloxacin (8.5%) were lower in febrile goats. The Cmax. (0.18 microg /mL) and AUC (0.99 microg .h/mL) of ciprofloxacin were significantly decreased, whereas its t1/2beta (2.75 h) and MRT (4.58 h) were prolonged in febrile than in normal goats. Concomitant administration of probenecid (40 mg/kg, i.v.) with enrofloxacin did not significantly alter any of the pharmacokinetic variables of either enrofloxacin or ciprofloxacin in goats.


Assuntos
Anti-Infecciosos/farmacocinética , Ciprofloxacina/farmacocinética , Endotoxinas/toxicidade , Febre/metabolismo , Fluoroquinolonas , Probenecid/toxicidade , Quinolonas/farmacocinética , Uricosúricos/toxicidade , Animais , Anti-Infecciosos/sangue , Área Sob a Curva , Ciprofloxacina/sangue , Interações Medicamentosas , Enrofloxacina , Feminino , Febre/induzido quimicamente , Cabras , Meia-Vida , Injeções Intravenosas , Taxa de Depuração Metabólica , Quinolonas/sangue
20.
Arch Toxicol ; 72(6): 347-54, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9657282

RESUMO

Recent studies have shown that tetrafluoroethylene is a renal and hepatic carcinogen in the rat. In this study, we have examined the ability of a single i.p. dose of 1,1,2,2-tetrafluoroethyl-L-cysteine (TFEC), a major metabolite of tetrafluoroethylene, to produce hepatic and renal injury in male and female rats. We have also examined the effect of blocking the renal organic anion transport system with probenecid and of inhibiting the activity of cysteine conjugate beta-lyase with aminooxyacetic acid on the extent of renal injury produced by TFEC. Doses of > or = 12.5 mg/kg TFEC produced renal tubular necrosis to the pars recta of the proximal tubules within 24 h in both male and female rats. This was associated with an increased kidney to body weight ratio and plasma urea at doses of > or = 25 mg/kg. No consistent evidence of liver injury was seen at doses up to 50 mg/kg TFEC in rats of either sex, although occasional vacuolation of hepatocytes and a small dose-related increase in liver to body weight ratio was observed. Prior treatment of female rats with probenecid completely prevented the renal injury produced by either 25 or 50 mg/kg TFEC as judged by plasma urea and histopathology. However, prior treatment of female rats with aminooxyacetic acid afforded no protection against the nephrotoxicity produced by either TFEC or the cysteine conjugate of hexachloro-1,3-butadiene. Thus no major sex difference in nephrotoxicity in the rat was seen with TFEC, while accumulation of TFEC, or its N-acetyl derived metabolite, into renal proximal tubular cells via a probenecid sensitive transport system appears to be a key event in the mechanism of nephrotoxicity. The lack of protection observed with the cysteine conjugate beta-lyase inhibitor, aminooxyacetic acid, may reflect the inability to completely inhibit the mitochondrial form of this enzyme and thereby prevent the formation of the reactive metabolite. Our acute studies provide no insight concerning the liver carcinogenicity of tetrafluoroethylene.


Assuntos
Cisteína/análogos & derivados , Hidrocarbonetos Fluorados/toxicidade , Acetilcisteína/análogos & derivados , Acetilcisteína/toxicidade , Ácido Amino-Oxiacético/toxicidade , Animais , Butadienos/toxicidade , Cisteína/toxicidade , Relação Dose-Resposta a Droga , Feminino , Transporte de Íons/efeitos dos fármacos , Nefropatias/induzido quimicamente , Masculino , Probenecid/toxicidade , Ratos , Fármacos Renais/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...